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Why s it a High
Impact Problem

o2 Public X 5 éEconomic <~ - Emergency
T ® Safety AL ¥ stability

=== Responders

Vulnerable populations Businesses lose billions of Emergency responders rely on
(elderly, medical patients) dollars annually in the U.S. electricity for communication
rely on power for life-saving due to outages. and coordination.

devices (e'g'7 VentllatOrS). [Ref: Macmillan et al., 2023] [Ref: Adhikari et al., 2017]

[Ref: Greenwald et al., 2004, Apenteng et al., 2018]

Amongst many others.............



Methodology

Paper 1:
Used a Negative Binomial Regression model to

Negative Binomial Regression for analyze power outages caused by hurricanes
Hurricane-Induced Power Outages Observations

e Grid cell Based Model failed and Zip-Code based model was
Table 2. Number of Data Points in Grid Cell Model by Company and employed instead

Hurricane {Mumber of points in Zip Code model in parentheses) e The model’s applicability is limited as it includes company

Company _ and hurricane indicator variables, restricting its use to the
Duke Progress specific cases studied.
Hurricane Energy Enerey Total
Bonnie _ 14.723 14,723 Performance
{233) (233}
Floyd 624 20,284 20,908 .
™ o) i) e, Pseudo-RA2 (Deviance-based): 78% (ZIp-Code)
o .
Fran 6.373 — 6.373 48% (Grid Cell)
(14) (14) .. .
Limitations
Total 6.007 35.007 42.004
(99) (535) (634)

e The model was developed using outage data from
only three hurricanes.

e The study focuses on permanent faults and does
not account for transient faults.

e The accuracy of the model is affected by missing
details about factors like recent tree trimming, and
other environmental variables.

Liu, Haibin & Davidson, Rachel & Rosowsky, David & Stedinger, Jery. (2005). Negative Binomial
Regression of Electric Power Outages in Hurricanes. Journal of Infrastructure Systems - J
INFRASTRUCT SYST. 11. 10.1061/(ASCE)1076-0342(2005)11:4(258).



Papel‘ 2: Methodology

Pred’Ct’ng Storm QUtageS Through e High-res WRF forecasts, satellite LAI, land cover,
New Representations of Weather and utility data on a unified 2-km grid.
and Vegetation e Multiple models (DT, GBM, RF, ENS, BART) with
PCA for dimensionality reduction.
| Data preparation - Irjpu;d'ati“ | IMac::::a;:::g Models] | Qutput | Observations

historical weather
and outage events
(76 extratropical,
44 convective)

Fills gaps using AR(1) and Gaussian filtering.

e Differentiates storm types for tailored variable selection.
e Captures complex interactions among weather, vegetation,
Opﬂm@ and infrastructure.
Land over O T e 24-hour forecasts align strongly with historical data.
L Y u
satellite v JAalh

[

Vegetation (LAI)
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Dutage Prediction

FIGURE 1. The Outage Prediction Model architecture.

Using a fixed 2-km grid might not capture localized
variations in weather and vegetation properly.

median absolute percentage error (MdAPE)  mean absolute percentage error (MAPE)  Nash-Sutcliffe Efficiency (NSE

MdAPE MAPE NSE

43% (+9%) 59% (+9%) 0.53 (+13%)

D. Cerrai et al., "Predicting Storm Outages Through New Representations of
Weather and Vegetation," in IEEE Access, vol. 7, pp. 29639-29654, 2019, doi:
10.1109/ACCESS.2019.2902558.



Paper 3:

Predicting Weather-related Power Outages

in Distribution Grid
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Y. Kor, M. Z. Reformat and P. Musilek, "Predicting Weather-related Power Outages in
Distribution Grid," 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC,
Canada, 2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9281829.

Methodology

Developed a WoutPS (Weather Outage Prediction System)
using and Ensemble Model with multiple prediction models

Observations

e Ensemble Model worked way better than the first 2

architectures

e Dempster-Shafer theory (DST) was used for Reasoning and
used to find Pignistic Probabilities

Performance

Table 11

PRECISION, RECALL, AND [y SCORE REPORT ON TEST DATA FOR

ARCHITECTURES a, b, ¢

Metric NoO | Wind | Snow | Icing | Macro Ave.
Precision a 0.93 0.65 0.83 0.73 0.79
Recall a 0.96 0.41 (.68 0.76 0.70
Iy score a 0.94 0.50 0.75 0.74 074
Precision b 0.93 0.66 0.85 0.74 0.80
Recall b 0.96 0.41 (.68 0.73 0.70
Fy score b 0.95 0.51 0.76 0.74 074
Precision ¢ 0.93 0.68 0.86 0.81 0.82
Recall ¢ 0.97 0.42 0.73 0.73 0.71
Fy score ¢ 0.95 0.52 0.79 0.77 .76

Limitations

PIGNISTIC PROBABILITY FOR \-’I‘;{}I‘::III.:ISA MPLES AND THE REFERENCE
VALUES
Id Reference NoO Wind Snow Icing
I NoO 0.9981 | 0.0005 | 0.0008 | 0.0006
2 NoO 0.0579 [ 0.3232 | 0.2362 | 0.3828
3 Wind 0.2342 | 0.7181 | 0.0246 | 0.0230
4 Wind 0.8203 | 0.1684 | 0.0056 | 0.0056
5 Snow 0.0286 | 0.0145 | 09402 | 0.0167
6 Snow 0.6642 | 0.0798 | 0.1836 | 0.0724
7 Icing 0.,0297 | 0.0339 | 0.0559 | 0.8804
Icing 0.0058 | 0.6912 | 0.1294 | 0.1736

Pignistic Probability show large differences for
different Classifiers resulting in less trust




Gap

(BART) (Table 4, first box). The typical feature of some of these models was a remarkable
overestimation of low impact events, as shown in W15 and H17, which led to very high values of
MAPE.

Paper 2 Despite the overall improved forecast skill of the conditioned OPM, QWD miseclassified some moderate
and low-severity events

F. Yang, P. Watson, M. Koukoula and E. N. Anagnostou, "Enhancing Weather-Related Power Outage
Prediction by Event Severity Classification,"

respectively. The classification F1 Scores for low-, moderate-, and high-severity classes using analysis
weather data were 0.62, 0.62, and 1, respectively, while using forecast weather data, they were 0.57,
0.67, and 1, respectively.

The existing Models have demonstrated reasonably good forecasting with the outage
prediction model (OPM).

But they still struggle with misclassification of moderate and low-severity storms.

Our project has addressed this gap by refining storm classification methodologies to
improve classification for moderate and low-severity storms as well.

Even lower/modern-severity storms can cause outages, affecting communities, businesses,
and emergency services.




FAGLET Dataset

The dataset consists of county-level electricity outage records in the United States from 2014 to 2023. It provides outage
estimates at 15-minute intervals, covering 92% of electricity customers across all 50 U.S. states by 2023. It makes it the most
comprehensive publicly available record of U.S. electricity outages. The data was compiled as part of the EAGLE-I (Environment
for Analysis of Geo-Located Energy Information) project, a GIS-based platform developed by Oak Ridge National Laboratory

(ORNL).
How they collected: Privacy and Security: Data Accuracy and Bias:
» Web scraping of publicly e The dataset only includes o Not all utilities report outages,
available outage reports from aggregated county-level so coverage is not 100%
over 456 U.S. electrical utilities. data, not individual e A Data Quality Index (DQI) was
e Automated parsers extracting household or customer developed by them to assess
data from utility websites every details coverage completeness and
15 minutes. ' accuracy across FEMA regions.
Time Period: Coverage: Granularity:

10 Years (2014-2023) 3044 of 3222 Counties 15 Minute Intervals



NOAA Dataset

This Dataset consists records of all
Storm related events and has the

following columns:

BEGIN YEARMONTH -
BEGIN_DAY -
BEGIN_TIME -

END_YEARMONTH -
END_DAY -
END_TIME -

EPISODE_ID -
EVENT ID -
STATE -
STATE_FIPS -
YEAR .
MONTH_NAME -
EVENT TYPE -
CZ_TYPE -
CZ_FIPS -
CZ_NAME -

WFO .
BEGIN_DATE_TIME -
CZ_TIMEZONE -
END_DATE_TIME -

INJURIES_DIRECT -
INJURIES_INDIRECT -
DEATHS DIRECT -
DEATHS_INDIRECT -
DAMAGE_PROPERTY -
DAMAGE_CROPS -
SOURCE -

MAGNITUDE -
MAGNITUDE_TYPE -
FLOOD_CAUSE -
CATEGORY -
TOR_F_SCALE -
TOR_LENGTH -
TOR_WIDTH -
TOR_OTHER_WFO -
TOR_OTHER_CZ_STATE -
TOR_OTHER_CZ_FIPS -
TOR_OTHER_CZ _NAME .
BEGIN_RANGE -
BEGIN_AZIMUTH -
BEGIN_LOCATION -

EPISODE_NARRATIVE
EVENT_NARRATIVE

END_RANGE -
END_AZIMUTH -
END _LOCATION -
BEGIN_LAT -
BEGIN LON

END_LAT
END_LON -

DAalAa SOURCE -

Documents

1.The occurrence of storms and other significant
weather phenomena having sufficient intensity
to cause loss of life, injuries, significant property
damage, and/or disruption to commerce;

2.Rare, unusual, weather phenomena that
generate media attention, such as snow flurries
in South Florida or the San Diego coastal area

3.0ther significant meteorological events, such as
record maximum or minimum temperatures or
precipitation that occur in connection with
another event.

Time Period:

74 Years (1950-2023)

We are using only 10 years
(2014-2023)



PRISM Climate Dataset

The PRISM dataset provides high-resolution, county-level climate data across the United States, developed by the PRISM
Climate Group at Oregon State University. Data that we are using includes daily estimates of key meteorological variables such
as minimum temperature (tmin), maximum temperature (tmax), average temperature (tavg), precipitation (ppt), and stability
indices. Covering the period from 1981 to the present, the dataset integrates ground-based observations, satellite data, and
topographic information using sophisticated interpolation techniques.

How they collected: Privacy and Security: Data Accuracy and Bias:
o Gridded climate data generated using ~ The dataset contains only * Uses statistical models to correct
advanced spatial climate modeling aggregated geospatial and for topographic and geographic
techniques. meteorological data, no biases in climate data
e Daily values are available at a ~4 km personal, household, or ’ Ap'_O“eS_ izerens el C(_)ntml e
resolution and aggregated to the identifiable customer data is weighting of weather stat|or.1 data to
_ reduce errors and ensure reliable
county level. included. interpolation
Time Period: Coverage: Granularity:

43 Years (1981-2023) | |
We are using only 10 years All Counties Dally Data

(2014-2023)



Feature Preprocessing & Selection

1.Cleaned up the data:

e Removing redundant features
e One hot encoding
e Fixing date time
e Converting to same time zone
e Fixing data types

(...and more)

AOECEE T FEE OO MO0 OO AT CHACAO T Ot

zzzzzzzzz
3 EC S0 %0 = =2 &

Red = Removed
Green = Imputed

2. Added a new feature of duration (by subtracting end and
start time)

3. Merging the three datasets based on location and time



Feature Preprocessing & Selection

Magnitude Imputation NLP Integration 1-Hour Time Lag

1.We preprocessed the description 1.The dataset is lagged by 1
column by converting text to hour to capture immediate
lowercase and removing non- precursors of storm events.

alphabetic characters. 2. For each storm, it selects
2.We tokenized the cleaned text and .
the nearest climate record

removed common English _
occurring after a 1-hour

delay.

1.A RandomForestRegressor was
trained on relevant features to
predict missing 'MAGNITUDE'

values.

2.Then, a RandomForestClassifier
used the imputed or existing
magnitudes to infer missing
'MAGNITUDE_TYPE".

3.The imputed values were added
back to the original dataset for
further analysis.

stopwords.
3. Lemmatization was applied to
reduce words to their base form.
4. The cleaned tokens were joined
back into a string and saved as
desc_clean.




Overview of MI. Methodology

e Objective:

o Predict storm occurrence, severity, and power outages using a multi-stage ML pipeline.

e Pipeline Structure:

o Stage 1: ldentify storm events (binary classification).
o Stage 2: Classify storm severity (multi-class).
o Stage 3: Predict power outages for each severity level (binary classification).

t

Storm Forecast

N

No Storm Is Storm

l

Storm Severity
Prediction

e Key Features:
Power Outage . _ _
Predlctlon Sequential processing of weather,
damage, and text-derived features.

Low
Severity
LightGBM

( LightGBM >

/ o Modular design for scalability and real-
| time predictions.
Medium Outage
Sevenly >< XGBoost ) < e Why This Approach?:
o oute o Handles complex, non-linear
e deFt\ relationships in weather and outage data.
J o Supports diverse tasks (binary and multi-

class) with high accuracy.



Storm Forecasting

Random Forest XGBoost
rf_model = RandomForestClassifier( xgb_model = xgb.XGBClassifier(

. n_estimators=271, : : .
n_estimators=2081, Storm Prediction Test Metrics: max_depth=s7 Storm Prediction Test Metrics
max_depth=38, Accuracy : ©.9218 min_child_weight=1, Accuracy : ©.9383
min_samples_split=5, —_— Precision: ©.9292 SU'is‘ﬂmF’ie:E-3495521;32333::5169535 — Precision: ©.9344

i - : e e - Recall : 0.9264
min_samples_leaf=2, Recall : ©.9141 learning_rate=0.13297767767696025,
random_state=42 F1 Score : 8.9216 random_state=42, F1 Score : ©0.9304
) eval_metric='logloss’,
: . . use_label_encoder=False
rf_model.fit(X_train_scaled, y_train) )
xgb_model.fit(X_train_full_scaled, y_train_full)
mlp_mu:_:-del = MLPCla“_‘lsj‘fier( # Train CatBoost model with best hyperparameters directly
hidden_layer_sizes=(100, 188), cat_model = cb.CatBoostClassifier(
learning_rate_init=0.08014838319709889086, Storm Prediction Test Metrics depth=10, i Storm Prediction Test Metrics
alpha=8 .00811678125845319615, learning_rate=0.2687409636513983,
s : Accuracy : ©.8963 iterations=30, Accuracy : 0.91e4
solver="adam’, - 12_leaf_reg=4.939014260456282
max_iter=1000, d Precision: ©.9069 border_count=70. ' d Precision: ©.9192
random_state=42, Recall : ©.8846 random_seed=42, Recall : 9.9010
early_stopping=True, F1 S . task_type='CPU",
core : ©.8956 il .
validation_fraction=6.1 ] verbose=8 F1 Score : ©.9166
) . . _ cat_model.fit(X_train_full_scaled, y_train_full)
mlp_model.fit(X_train_full_scaled, y_train_full)
l1gb_model = lgb.LGBMClassifier( best_params = {
num_leaves=95, ‘n_layers': 3
max_depth=17, Storm Prediction Test Metrics 'n_units_l@': 234, Test Accuracy: ©.8975
learning_rate=0.27723713319564375, , ,‘
n_estimators=300, Accuracy : ©.9283 dropout_l8 I 8.15187251202817453, Test F1 Score: ©.8962
mdn_chlld_sampes=21, ===  precision: ©.9322 L ety e — ision:
subsample=8.882675261917957, dropout_11': 8.2551136183189102, Test Precision: ©.9127
colsample_bytree=0.6619967560096481, Recall : 0.9246 ‘'n_units_12': 241, Test Recall: P .28032
random_state=42, F1 Score @ ©.9284 "dropout_12': 0.18855025262124199,
objective="binary’, ‘learning_rate': ©.0007371892834885776,
metric="binary_logless’ ‘batch_size': 64
) !




Storm Forecasting - XGBoost

Task:
o Binary classification (is_storm_lagged: O=non-storm, 1=storm).
Model:

o XGBoost (n_estimators=271, max_depth=27, min_child_weight=1,
subsample=0.9496561162982775, colsample_bytree=0.6753754188169535,
learning_rate=0.13297767767696025, random_state=42,
eval_metric='logloss’, use_label_encoder=False).

Why XGBoost?:

o Excels in structured data with gradient boosting.

o Handles high-dimensional data (21 features) with robustness.

o Fast and scalable for large datasets.

How It Works:
o |teratively builds trees, minimizing a loss function (log-loss for binary).

o Uses regularization (L1, L2) tQ prevent overfitting.
I B é

| Power Outage
P /il Prediction

Storm Forecast Low

S y
O o vLighteeM )
Medium Outage
Severity
No Storm Is Storm ( XGBoost ) < No Outage

l High

Severity Random Forest
Storm Severity
Prediction

( LightGBM )

Classification Report:

precision
5] 8.92
1 8.93

accuracy
macro avg ©.93
welghted avg ©.93

Top 10 Features for Storm Prediction (XGBoost)
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8.93
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Severity Prediction

Random Forest

rf_model = RandomForestClassifier(
n_estimators=201,
max_depth=38,
min_samples_split=5,
min_samples_leaf=2,
random_state=42

—

)

rf_model.fit(X_train_scaled, y_train)

Severity Prediction Test Metrics:

Accuracy : ©.9033
Precision: ©.9033
Recall ©.9033
F1 Score B.9833

XGBoost

xgb_model = XGBClassifier(
n_estimators=483,
max_depth=18,
learning_rate=0.089065400280278058,
subsample=08.933968895676629,
colsample_bytree=6.5647574878282744,
gamma=08.00881/586655877512627,
min_child_weight=2,
use_label_encoder=False,
eval_metric='logloss’,
random_state=42

—

Severity Prediction Test
Accuracy : ©.9157
Precision: ©.9158
Recall ©.9157
F1 Score 0.9157

LightGBM

final_params = {
'objective’: 'multiclass’,
‘num_class’' . len(y_train.unique()),
‘'metric’': 'multi_logloss’,
"boosting_type': 'gbdt’,
‘verbose' : -1,
'random_state': 42,
‘n_estimators’: 943,
‘max_depth': 14,
"learning_rate’': 8.2997986367930699,
‘subsample’ : ©.6815843772645557,
‘colsample_bytree’': 8.96754808083596196,
‘min_child_weight': 1.2892385914567714,
‘reg_alpha’ : ©.809927790289736168,
‘reg_lambda’: 1.7396121269192825e-86

Severity Prediction Test Metrics
Accuracy : ©.9308
Precision: ©.9309
Recall ©.9308
F1 Score 0.9308

CatBoost

# Best parameters from Optuna
best_params = |
"iterations’: 771,
"depth': 10,
'learning_rate': 8.13586879270872531,
'12_leaf_req': 3.698596513420882e-08,
'bagging_temperature’: ©.88933994426599372,
‘random_strength’: 8.18544889935311812,
"border_count': 178,
‘loss_function': 'MultiClass’,
'random_seed' . 42,
'verbose': @
cat_model = CatBoostClassifier(+*xbest_params)
cat_model.fit(X_train_scaled, y_trainj

—

Severity Prediction Test Metrics

Accuracy : ©.9094
Precision: ©.9096
Recall 0.9094
F1 Score 8.9095



Severity Prediction - LightGBM

e Task:

o Multi-class classification (severity_class: O=low, 1=medium, 2=high).

e Model:

o LightGBM (objective="multiclass’, num_class=len(y_train.unique()), metric="multi_logloss’,
boosting_type='gbdt’, verbose=-1, random_state=42, n_estimators=943, max_depth=14,

learning_rate=0.299798636793099, subsample=0.6815843772645557,

colsample_bytree=0.967548003596196, min_child_weight=1.2892385914567714,

reg_alpha=0.009927790289736168, reg_lambda=1.7396121269192825e-06).
e Why LightGBM?:
o Faster training than traditional gradient boosting.

o Optimized for large datasets with encoded categorical features (e.g., EVENT_TYPE_encoded).

e How It Works:

o Uses histogram-based learning for efficiency.
o Builds trees leaf-wise, focusing on high-error regions.

Storm Forecast

XGBoost

No Storm

Is Storm

l

Storm Severity
Prediction

Low
Severity

Power Outage
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Medium
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{
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|
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a
1
2
1@

accuracy
macro avg
weighted avg

CZ_FIPS
duration_hours
desc_word_count
WFO_encoded

tmin

Feature

tmax

tavg
EVENT_TYPE_encoded
DAMAGE_PROPERTY

has_wind

precision

8.97
2.9
2.91
1.00

@.94
@.93

recall f1-score

2.96 a
8.9 a
8.92 a
1.08 1

@
8.94 @
8.93 9.

97
., 90
91
. 00

.93
.94

93

support

6674
6326
6614
1787

21395
21395
21395

Top 10 Features for Severity Prediction (LightGBM)

2000 4000

6000 8000 10000

Feature Importance

12000

14000




Low Severity

Random Forest

rf_model = RandomForestClassifier(
n_estimators=262,
max_depth=41,
min_samples_split=3,
min_samples_leaf=1,
max_features='log2"',
bootstrap=False,
random_state=42,
n_jobs=-1

—

Accuracy: ©.9774

Precision (weighted): ©.9774
Recall (weighted): ©.9774

F1 Score (weighted): ©.9774

XGBoost

xgb_model = XGBClassifier(
n_estimators=186,

max_depth=15, AECUTafy: 9-9?53
learning_rate=68.11882277907124656, 3 Precision (weighted): ©.9767
subsample=0.881744658089053, Recall (weighted): ©.9763

colsample_bytree=6.9175879642668498,
gamma=1.6112766577235877,
min_child_weight=3,
use_label_encoder=False,
eval_metric="logloss’,
random_state=42

F1 Score (weighted): ©.9764

LightGBM

1gb_model = 1gb.LGBMClassifier(
n_estimators = 319,
learning_rate = 0.847847333969262976,
num_leaves = 281,
max_depth = 28,
min_child_samples = 22,
subsample = 8.527136639688917,
colsample_bytree = 8.832676808835089417,
random_state = 42

)
1gb_model.fit(X_train_scaled, y_train)

Accuracy: 0.9783

Precision (weighted): ©.9784
Recall (welghted): ©.9783

F1 Score (welghted): ©.9783

CatBoost

# Best parameters from Optuna
best_params = |

‘iterations’: 771, Accuracy: ©6.9778

‘depth’: 18, Precision (weighted): ©.9780
'learning_rate': 8.13586879270872531, c .

'12_leaf_reg' : 3.698596513420882e-08, —_—) Recall (weighted): ©.9778
'bagging_temperature’ : 8.88933994426599372, F1 Score (weighted): ©.9778

‘random_strength’: 8.18544889935311812,
"border_count': 178,
‘loss_function': 'MultiClass’,
'random_seed' : 42,
‘verbose': 8

!

cat_model = CatBoostClassifier(+*xbest_params)
cat_model.fit(X_train_scaled, y_trainj



Outage Prediction - Low Severity

Task:

o Binary classification (is_outage: O=no outage, 1=outage) for low-severity

storms.
Model:

o LightGBM(n_estimators = 319, learning_rate = 0.047847333909262976,
num_leaves = 281, max_depth = 20, min_child_samples = 22, subsample =
0.527136639688917, colsample_bytree = 0.8326768083509417)

Why LightGBM?:
o High performance with 19 features, including encoded variables.
o Optimized for categorical and numerical feature interactions.
How It Works:
o Uses histogram-based learning for efficiency.
o Builds trees leaf-wise, focusing on high-error regions.
N N
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Medium Severity

Random Forest XGBoost

rf_model = RandomForestClassifier( best_params = {
n_estimators=229, . n_estimators’': 284, .
max_depth=38, Accuracy: ©.9583 ‘max_depth': 15, AECUI:‘EIF},#’. @-9{:-_‘@1
min_samples_split=5, Precision (weighted): ©.9590 'learning_rate’ : 8.67917066358756152, Precision (weighted): ©.9609
min_samples_leaf=1, > Recall (weighted): ©.9583 ,S“‘;S&mpie : f'BBT??EGE;E?EEE;S%B% > Recall (weighted): ©.9601
max_features="log2", - U ' F1 Score (WE]-. htEd}' 8.9601
e F1 Score (weighted): ©.9583 ‘gammal-h@;83g5’;‘§§:§:§2322§:é432 & C
_ reg_alpha': ©. ;
=4
;aqggz;f:ate 2, ‘reg_lambda’: 8.976910874440883599,
) -] ‘random_state’: 42,
rf_model.fit(X_train_scaled, y_train) ‘use_lahelfe??o§er : Fa}se,
eval_metric': 'logloss’,
‘n_jobs’: -1

LightGBM CatBoost

best_params = |

1gb_model = 1lgb.LGBMClassifier(
n_estimators=542,

Accuracy: ©.9581 JEEEeaE Tol et :
learning_rate=8.108968121619531485, Aty : depth’: 1, HEHILED TS shRain.
llEngEss i Precision (weighted): ©.9588 ‘learning_rate’ : ©.2194699455508984, Precision (weighted): ©.9591
max_depth=18, > Recall (weighted): ©.9581 .ii;;‘:ff;;ﬁgt.‘_1é233335?198493136’ — Recall (weighted): ©.9584
min_child_samples=16, . : - mE - .
baaeilen 83255?&98232?813 F1 Score (weighted): ©.9581 random_strength’: ©.5475461128526853, F1 Score (welghted): ©.9585

'bagging_temperature’: 8.37619138326115115,
‘verbose': 8,
‘random_seed’ : 42

colsample_bytree=0.7189561164593746,
reg_alpha=0.6242839973893298,
reg_lambda=0.00655571732596838, 4

random_state=42, final_model = CatBoostClassifier(#xbest_params)
n_jobs=-1 final_model.fit(X_train_scaled, y_train)




Outage Prediction - Medium Severt

e Task: . e i
. e . . Classification Report:
o Binary classification (is_outage) for medium-severity storms. o
. Model: precilsion recall fl1-score  support
o XGBoost(n_estimators=284, max_depth=15, learning_rate=0.07917066358756152,
% B.99 8.96 8.98 6898

subsample=0.8015700617998658, colsample_bytree=0.5290123884596338,

gamma=0.03854854253333355, reg_alpha=0.13733556293746432, 1 9.96 6.99 0.97 6285
reg_lambda=0.9769107444083599, random_state=42, use_label_encoder=False,

eval_metric="logloss’, n_jobs=-1) dccuracy 8.9/ 13183

e Why Random Forest?: macra avg @.97 8.98 8.97 13183

o Excels in capturing feature interactions (19 features). welghted avg @.98 .97 8.97 13183

o Handles class imbalance effectively with weighted loss.
e How It Works:

Top 10 Features for Medium-Severity Outage Prediction (XGBoost)

o |teratively builds trees, minimizing a loss function. T
o Uses regularization to prevent overfitting.
has_flood
has_hail
| ) a Power Outage )
B t+1 Prediction has_tree
Storm Forecast Low |
Severity ) g has_wind
XGBoost )( LightGBM ; 3
008 § DEATHS_DIRECT
Igediutf;l < Outage has_blown
cverl |
XGBoost
No Storm Is Storm No Outage duration_hours
High
l' Sevlegrity Permiihann T ) tavg
Storm Severity e tmin
Prediction

LiehtGBM 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
18 Feature Importance



Iigh Severity

Random Forest

rf_model = RandomForestClassifier(
n_estimators=201,
max_depth=38,
min_samples_split=4,
min_samples_leaf=1,
max_features="sqrt’,
bootstrap=False,
random_state=42,
n_jobs=-1

—

Accuracy: 0.9656

Precision (welghted): ©.9664
Recall (weighted): ©.9656

F1 Score (welghted): ©.9657

XGBoost

best_params = |
'n_estimators’: 259,
‘max_depth': 15,
'learning_rate': ©.89299367597135838,
"subsample’ : 0.8143647474866939,
‘colsample_bytree': 8.7911741209414708,
‘gamma’ : ©.41166113452377523,
‘reg_alpha’: ©8.7767757183621074,
‘reg_lambda’': ©.208469230843887554,
‘random_state” : 42,
'use_label_encoder’ : False,
‘eval_metric': '"logloss’,
‘n_jobs': -1

—

Accuracy: ©.9626

Precision (weighted): ©.9637
Recall (weighted): ©.9626

F1 Score (weighted): ©.9627

LightGBM

best_params = |
‘n_estimators’: 248,
‘max_depth': 12,
‘learning_rate': 8.21777188837853535,
‘num_leaves' : 189,
‘feature_fraction': 8.6825416905884299,
‘bagging_fraction': 8.9811328465838242,
‘bagging_freq': 3,
‘lambda_11": 1.3685313154773883,
‘lambda_12": 2.017680534793574,
‘objective’: "binary’,
‘'metric': 'binary_logloss’,
‘verbosity': -1
'boosting_type': 'gbdt’,
'random_state': 42,
‘n_jobs’: -1
il
final_model = 1lgb.LGBMClassifier(**best_params)
final_model.fit(X_train_scaled, y_train)

Accuracy: ©.9619

Precision (welghted): ©.9626
Recall (welghted): ©.9619

F1 Score (weighted): ©.9619

FNN

n_units = [80, 112, 96]

dropout_rate = 8.1677425146431672
learning_rate = 8.881715383587455835
batch_size = 64

model = Sequential()

model .add(Dense(n_units[8], activation='relu
model.add(Dropout(dropout_rate))
model.add(Dense(n_units|[1], activation='relu
model.add(Dropout(dropout_rate))
model.add(Dense(n_units[2], activation='relu
model.add(Dense(1, activation='sigmoid’))

Accuracy: ©.9382

Precision (weighted): ©.9438
Recall (welghted): ©.9382

F1 Score (weighted): ©.9382



Outage Prediction - High Severity

e Task:

o Binary classification (is_outage) for high-severity storms.
 Model:

o RandomForestClassifier (n_estimators=201, max_depth=38,

min_samples_split=4, min_samples_leaf=1, max_features='sqrt’,

bootstrap=False, random_state=42, n_jobs=-1).
e Why Random Forest?:
o Robust to noise in high-severity data (19 features).
o Reduces overfitting via ensemble of decision trees.
e How It Works:
o Constructs multiple decision trees on bootstrapped data.
o Aggregates predictions via majority voting.

Power Outage

Fo Prediction

Storm Forecast Low

Severily .

XGBoost
Medium
Severity
No Storm Is Storm !( XGBoost > <

l High

Severi
2 > Random
Forest

Storm Severity
Prediction

( LightGBM )

Outage

No Outage

Classification Report:

preclsion recall fl1-score  support

(5] 8.99 .96 6.98 6916

1 8.96 8.99 6.98 6662

accuracy 0.98 13572
macro avg @.95 0.98 0,98 13572
welghted avg ©.98 ©.98 ©.98 13572

Top 10 Features for High-Severity Outage Prediction (Random Forest)

EVENT_TYPE_encoded
has_flood

tmin

tavg

duration_hours

Feature

tmax

has_wind
desc_word_count
CZ_FIPS

DAMAGE_PROPERTY

0.0 0.1 0.2 0.3 0.4
Feature Importance



Challenges and Solutions

Challenge: Data imbalance due to missing
outage records not caused by storms

Challenge: Existing model evaluation
metrics were incompatible with our

methodology.
Solution: Included non-storm-related outage

data and ensured balanced distribution
across all three severity levels to prevent
overfitting

Solution: Developed custom performance
metrics by aggregating F1 scores across
individual processing steps to accurately
assess model effectiveness.

Challenge: Model Performance Stagnating
with existing features

Solution: Integrated Natural Language
Processing (NLP) techniques to extract
richer insights from text data, resulting in
a ~1.5x improvement in model
performance.



Performance Metric
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Performance Metric

Performance for Forecasting
Flgiorm - Flseverity = 0.3633

Performance for Predicting
wr, - FlL—I—wM FlM—I—wH Flg —098

where wjp = Wy = Wy =
nL+nM+nH nL+nM+nH nL+nM+nH

Overall Performance Metric




Why this Performance Metric?

Miinal = Flgiorm * Flseverity - (Wr - F1p +wpr - Flpy +wpy - Flg)

e Why F1Score?
o F1-scores address class imbalance (e.g., rare "Is Storm" or "Outage" cases), making sure that the metric

Isn’t skewed by majority classes, unlike accuracy.

o F1-score (harmonic mean of precision and recall) penalizes false positives and false negatives equally. For
example, in Outage Prediction, a false positive (predicting an outage when none occurs) might trigger
unnecessary alerts, while a false negative (missing an outage) could leave systems unprepared —both are
equally costly, so F1 balances these errors.

 Taking into account error propagation:
o Multiplying F1_storm and F1_severity reflects the pipeline’s sequential nature, where errors in storm

detection or severity classification propagate and impact outage predictions.

» Weighted Outage Predictions
owr - Fly +wys - Fly + wy - F'1 g balances the contributions of Low, Medium, and High severity

branches based on their frequency, ensuring fair representation of each severity level’s performance.



Benchmarking Our Model

Forecasting Benchmark

Model Task Metric Value
Our Storm Presence Classification F1-score 0.9308
Our Storm Severity Classification F1-score 0.9329
Our Combined Forecasting Metric F1{storm} x F1{severity} 0.8683
RAIN-F+ (2024) Precipitation Classification F1-score ~0.70
(>0.1 mm/h)
Saito et al. (2018) Tropical Cyclone Detection POD (Probability of Detection) 6.912
Yang et al. (2020) Storm Severity Classification Accuracy 0.76
Lagerquist et al. (2020) Convective Storm Classification Not specified -
Predicting Benchmark
Model Task g Metric Value
Our Power Outage Prediction Weighted F1-score 0.98
(weighted across severity)
Ertekin et al. (2024) Power Outage Duration Prediction Accuracy 0.98433
Ertekin et al. (2024) Power Outage Duration Prediction F1-score 0.98449
Khodaei (2016) Component Outage Prediction F1-score 0.9027
Wang et al. (2024) Outage Probability Prediction MAE 0.01346-0.03547
Mohammadi et al. (2020) Power Line Outage Identification Not specified -
Sequential Forecasting and Prediction Models Comparison
q Model Tasks g Metrics Values p
Our Storm Forecasting + Severity Classification + Combined Forecasting Metric 0.8503
Outage Prediction
Yang et al. (2020) Severity Classification + Outage Prediction Severity Classification 0.76
Accuracy

Cerrai et al. (2019) Weather Forecasting + Outage Prediction Not specified -



Deplovability of Our Model in I'uture

Serialized _
Data Integration & :DS.ave.d) Model I3=I][||]
Real Time Feeds ipeline Dashboard
National Weather
Service (NWS) API 77 W
Feature v _ ~
(/b\ Extraction & —{23:; /:;usrte';‘g—vPrediction API ’g:/esl;tems

Preprocessing

OpenWeatherM o= m

b 'é.' = &
¢/
GIS

Integration



Challenges Deplovability Can Face

e Data Latency and Availability
o Delays or missing real-time weather data during storms can lead to late predictions, reducing response
time for utilities.
e Model Drift and Generalization
o Shifting weather patterns or regional differences can degrade model accuracy, requiring frequent
retraining.
Handling Noisy or Incomplete Data
o Noisy (e.g., erroneous wind speed) or incomplete (e.g., missing storm path) data can cause incorrect
classifications, cascading errors through the pipeline.
Regulatory and Ethical Concerns
o Errorsin predictions may lead to legal or ethical issues, such as neglecting regions due to false negatives,
requiring compliance and fairness checks.
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