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Why is it a High
Impact Problem

Vulnerable populations

(elderly, medical patients)

rely on power for life-saving

devices (e.g., ventilators).

[Ref: Greenwald et al., 2004, Apenteng et al., 2018]

Businesses lose billions of

dollars annually in the U.S.

due to outages.

[Ref: Macmillan et al., 2023]

Emergency responders rely on

electricity for communication

and coordination.

[Ref: Adhikari et al., 2017]

Public
Safety

Economic
Stability

Emergency
Responders

Amongst many others.............



Paper 1:

Grid cell Based Model failed and Zip-Code based model was

employed instead

The model’s applicability is limited as it includes company

and hurricane indicator variables, restricting its use to the

specific cases studied.

Observations

Pseudo-R^2 (Deviance-based): 78% (ZIp-Code)

                                                              48% (Grid Cell)

Performance 

The model was developed using outage data from

only three hurricanes.

The study focuses on permanent faults and does

not account for transient faults.

The accuracy of the model is affected by missing

details about factors like recent tree trimming, and

other environmental variables.

Limitations

Used a Negative Binomial Regression model to

analyze power outages caused by hurricanes

Methodology

Negative Binomial Regression for
Hurricane-Induced Power Outages

Liu, Haibin & Davidson, Rachel & Rosowsky, David & Stedinger, Jery. (2005). Negative Binomial

Regression of Electric Power Outages in Hurricanes. Journal of Infrastructure Systems - J

INFRASTRUCT SYST. 11. 10.1061/(ASCE)1076-0342(2005)11:4(258). 



Paper 2:

Fills gaps using AR(1) and Gaussian filtering.

Differentiates storm types for tailored variable selection.

Captures complex interactions among weather, vegetation,

and infrastructure.

24-hour forecasts align strongly with historical data.

Observations

Using a fixed 2‑km grid might not capture localized

variations in weather and vegetation properly.

Limitations

High-res WRF forecasts, satellite LAI, land cover,

and utility data on a unified 2‑km grid.

Multiple models (DT, GBM, RF, ENS, BART) with

PCA for dimensionality reduction.

Methodology

Predicting Storm Outages Through
New Representations of Weather

and Vegetation

D. Cerrai et al., "Predicting Storm Outages Through New Representations of

Weather and Vegetation," in IEEE Access, vol. 7, pp. 29639-29654, 2019, doi:

10.1109/ACCESS.2019.2902558.



Paper 3:

Ensemble Model worked way better than the first 2

architectures

Dempster-Shafer theory (DST) was used for Reasoning and

used to find Pignistic Probabilities

Observations

Performance 

 Pignistic Probability show large differences for

different Classifiers resulting in less trust

Limitations

Developed a WoutPS (Weather Outage Prediction System)

using and Ensemble Model with multiple prediction models

Methodology

Predicting Weather-related Power Outages
in Distribution Grid

Y. Kor, M. Z. Reformat and P. Musilek, "Predicting Weather-related Power Outages in

Distribution Grid," 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC,

Canada, 2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9281829.



Gap

The existing Models have demonstrated reasonably good forecasting with the outage

prediction model (OPM). 

But they still struggle with misclassification of moderate and low-severity storms. 

Our project has addressed this gap by refining storm classification methodologies to

improve classification for moderate and low-severity storms as well. 

Even lower/modern-severity storms can cause outages, affecting communities, businesses,

and emergency services.

F. Yang, P. Watson, M. Koukoula and E. N. Anagnostou, "Enhancing Weather-Related Power Outage

Prediction by Event Severity Classification," 

Paper 2



EAGLE-I Dataset

10 Years (2014-2023) 3044 of 3222 Counties 15 Minute Intervals

The dataset consists of county-level electricity outage records in the United States from 2014 to 2023. It provides outage

estimates at 15-minute intervals, covering 92% of electricity customers across all 50 U.S. states by 2023. It makes it the most

comprehensive publicly available record of U.S. electricity outages. The data was compiled as part of the EAGLE-I (Environment

for Analysis of Geo-Located Energy Information) project, a GIS-based platform developed by Oak Ridge National Laboratory

(ORNL).

Web scraping of publicly

available outage reports from

over 456 U.S. electrical utilities.

Automated parsers extracting

data from utility websites every

15 minutes.

The dataset only includes

aggregated county-level

data, not individual

household or customer

details.

Not all utilities report outages,

so coverage is not 100% 

A Data Quality Index (DQI) was

developed by them to assess

coverage completeness and

accuracy across FEMA regions.

How they collected: Privacy and Security: Data Accuracy and Bias:

Granularity: Coverage:Time Period:



This Dataset consists records of all

Storm related events and has the

following columns :

NOAA Dataset

1.The occurrence of storms and other significant

weather phenomena having sufficient intensity

to cause loss of life, injuries, significant property

damage, and/or disruption to commerce;

2.Rare, unusual, weather phenomena that

generate media attention, such as snow flurries

in South Florida or the San Diego coastal area

3.Other significant meteorological events, such as

record maximum or minimum temperatures or

precipitation that occur in connection with

another event.

Documents

Time Period:

74 Years (1950-2023)

We are using only 10 years

(2014-2023)



PRISM Climate Dataset

43 Years (1981-2023)
We are using only 10 years

(2014-2023)

All Counties Daily Data

The PRISM dataset provides high-resolution, county-level climate data across the United States, developed by the PRISM

Climate Group at Oregon State University. Data that we are using includes daily estimates of key meteorological variables such

as minimum temperature (tmin), maximum temperature (tmax), average temperature (tavg), precipitation (ppt), and stability

indices. Covering the period from 1981 to the present, the dataset integrates ground-based observations, satellite data, and

topographic information using sophisticated interpolation techniques. 

Gridded climate data generated using

advanced spatial climate modeling

techniques.

Daily values are available at a ~4 km

resolution and aggregated to the

county level.

The dataset contains only

aggregated geospatial and

meteorological data, no

personal, household, or

identifiable customer data is

included.

Uses statistical models to correct

for topographic and geographic

biases in climate data

Applies rigorous quality control and

weighting of weather station data to

reduce errors and ensure reliable

interpolation

How they collected: Privacy and Security: Data Accuracy and Bias:

Granularity: Coverage:Time Period:



Feature Preprocessing & Selection

1.Cleaned up the data:
Removing redundant features

One hot encoding

Fixing date time

Converting to same time zone

Fixing data types

(...and more)

2. Added a new feature of duration (by subtracting end and

start time)

3. Merging the three datasets based on location and time

Red = Removed

Green = Imputed



1.A RandomForestRegressor was

trained on relevant features to

predict missing 'MAGNITUDE'

values. 

2.Then, a RandomForestClassifier

used the imputed or existing

magnitudes to infer missing

'MAGNITUDE_TYPE'. 

3.The imputed values were added

back to the original dataset for

further analysis.

1.We preprocessed the description

column by converting text to

lowercase and removing non-

alphabetic characters.

2.We tokenized the cleaned text and

removed common English

stopwords.

3.  Lemmatization was applied to

reduce words to their base form.

4.  The cleaned tokens were joined

back into a string and saved as

desc_clean.

Magnitude Imputation 1-Hour Time LagNLP Integration

Feature Preprocessing & Selection

1.The dataset is lagged by 1

hour to capture immediate

precursors of storm events.

2.  For each storm, it selects

the nearest climate record

occurring after a 1-hour

delay.



Overview of ML Methodology

Key Features:

Sequential processing of weather,

damage, and text-derived features.

Modular design for scalability and real-

time predictions.

Why This Approach?:

Handles complex, non-linear

relationships in weather and outage data.

Supports diverse tasks (binary and multi-

class) with high accuracy.

t t+1

XGBoost

LightGBM

LightGBM

XGBoost

Random Forest

Storm Forecast

No Storm Is Storm

Storm Severity
Prediction

Medium
Severity

High
Severity

Low
Severity

Outage

No Outage

Power Outage
Prediction

Objective: 

Predict storm occurrence, severity, and power outages using a multi-stage ML pipeline.

Pipeline Structure:

Stage 1: Identify storm events (binary classification).

Stage 2: Classify storm severity (multi-class).

Stage 3: Predict power outages for each severity level (binary classification).



Storm Forecasting
Random Forest

MLP

XGBoost

CatBoost

LightGBM FNN



Storm Forecasting - XGBoost
Task: 

Binary classification (is_storm_lagged: 0=non-storm, 1=storm).

Model: 

XGBoost (n_estimators=271, max_depth=27, min_child_weight=1,

subsample=0.9496561162982775, colsample_bytree=0.6753754188169535,

learning_rate=0.13297767767696025, random_state=42,

eval_metric='logloss', use_label_encoder=False).

Why XGBoost?:

Excels in structured data with gradient boosting.

Handles high-dimensional data (21 features) with robustness.

Fast and scalable for large datasets.

How It Works:

Iteratively builds trees, minimizing a loss function (log-loss for binary).

Uses regularization (L1, L2) to prevent overfitting.

t t+1

XGBoost

LightGBM

LightGBM

XGBoost

Random Forest

Storm Forecast

No Storm Is Storm

Storm Severity
Prediction

Medium
Severity

High
Severity

Low
Severity

Outage

No Outage

Power Outage
Prediction



LightGBM

XGBoostRandom Forest

Severity Prediction

CatBoost



Severity Prediction - LightGBM
Task: 

Multi-class classification (severity_class: 0=low, 1=medium, 2=high).

Model: 

LightGBM (objective='multiclass', num_class=len(y_train.unique()), metric='multi_logloss',

boosting_type='gbdt', verbose=-1, random_state=42, n_estimators=943, max_depth=14,

learning_rate=0.299798636793099, subsample=0.6815843772645557,

colsample_bytree=0.967548003596196, min_child_weight=1.2892385914567714,

reg_alpha=0.009927790289736168, reg_lambda=1.7396121269192825e-06).

Why LightGBM?:

Faster training than traditional gradient boosting.

Optimized for large datasets with encoded categorical features (e.g., EVENT_TYPE_encoded).

How It Works:

Uses histogram-based learning for efficiency.

Builds trees leaf-wise, focusing on high-error regions.

t t+1

XGBoost

LightGBM

LightGBM

XGBoost

Random Forest

Storm Forecast

No Storm Is Storm

Storm Severity
Prediction

Medium
Severity

High
Severity

Low
Severity

Outage

No Outage

Power Outage
Prediction



LightGBM

XGBoostRandom Forest

Low Severity

CatBoost



Outage Prediction - Low Severity
Task: 

Binary classification (is_outage: 0=no outage, 1=outage) for low-severity

storms.

Model: 

LightGBM(n_estimators = 319, learning_rate = 0.047847333909262976,

num_leaves = 281, max_depth = 20, min_child_samples = 22, subsample =

0.527136639688917, colsample_bytree = 0.8326768083509417)

Why LightGBM?:

High performance with 19 features, including encoded variables.

Optimized for categorical and numerical feature interactions.

How It Works:

Uses histogram-based learning for efficiency.

Builds trees leaf-wise, focusing on high-error regions.

t t+1

XGBoost

LightGBM

LightGBM

XGBoost

Random Forest

Storm Forecast

No Storm Is Storm

Storm Severity
Prediction

Medium
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High
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Low
Severity

Outage

No Outage

Power Outage
Prediction



LightGBM

XGBoostRandom Forest

Medium Severity

CatBoost



Outage Prediction - Medium Severity
Task: 

Binary classification (is_outage) for medium-severity storms.

Model: 

XGBoost(n_estimators=284, max_depth=15, learning_rate=0.07917066358756152,

subsample=0.8015700617998658, colsample_bytree=0.5290123884596338,

gamma=0.03854854253333355, reg_alpha=0.13733556293746432,

reg_lambda=0.9769107444083599, random_state=42, use_label_encoder=False,

eval_metric='logloss', n_jobs=-1)

Why Random Forest?:

Excels in capturing feature interactions (19 features).

Handles class imbalance effectively with weighted loss.

How It Works: 

Iteratively builds trees, minimizing a loss function.

Uses regularization to prevent overfitting.

t t+1

XGBoost

LightGBM

LightGBM

XGBoost

Random Forest

Storm Forecast

No Storm Is Storm

Storm Severity
Prediction

Medium
Severity

High
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Low
Severity

Outage

No Outage

Power Outage
Prediction



LightGBM

XGBoostRandom Forest

High Severity

FNN



Outage Prediction - High Severity
Task: 

Binary classification (is_outage) for high-severity storms.

Model: 

RandomForestClassifier (n_estimators=201, max_depth=38,

min_samples_split=4, min_samples_leaf=1, max_features='sqrt',

bootstrap=False, random_state=42, n_jobs=-1).

Why Random Forest?:

Robust to noise in high-severity data (19 features).

Reduces overfitting via ensemble of decision trees.

How It Works:

Constructs multiple decision trees on bootstrapped data.

Aggregates predictions via majority voting.

t t+1

XGBoost

LightGBM

LightGBM

XGBoost

Random

Forest

Storm Forecast

No Storm Is Storm

Storm Severity
Prediction

Medium
Severity

High
Severity

Low
Severity

Outage

No Outage

Power Outage
Prediction



Challenges and Solutions

Challenge: Data imbalance due to missing

outage records not caused by storms

Solution: Included non-storm-related outage

data and ensured balanced distribution

across all three severity levels to prevent

overfitting

Solution: Integrated Natural Language

Processing (NLP) techniques to extract

richer insights from text data, resulting in

a ~1.5x improvement in model

performance.

Challenge: Model Performance Stagnating

with existing features

Solution: Developed custom performance

metrics by aggregating F1 scores across

individual processing steps to accurately

assess model effectiveness.

Challenge: Existing model evaluation

metrics were incompatible with our

methodology.



Performance Metric

“Forecasting” “Predicting”

t t+1

XGBoost

LightGBM

LightGBM

XGBoost

Random Forest

Storm Forecast

No Storm Is Storm

Storm Severity
Prediction

Medium
Severity

High
Severity

Low
Severity

Outage

No Outage

Power Outage
Prediction



Performance Metric
Performance for Forecasting

Performance for Predicting

Overall Performance Metric



Why this Performance Metric?

Why F1 Score?

F1-scores address class imbalance (e.g., rare "Is Storm" or "Outage" cases), making sure that the metric

isn’t skewed by majority classes, unlike accuracy.

F1-score (harmonic mean of precision and recall) penalizes false positives and false negatives equally. For

example, in Outage Prediction, a false positive (predicting an outage when none occurs) might trigger

unnecessary alerts, while a false negative (missing an outage) could leave systems unprepared—both are

equally costly, so F1 balances these errors.

Taking into account error propagation:

Multiplying F1_storm and F1_severity reflects the pipeline’s sequential nature, where errors in storm

detection or severity classification propagate and impact outage predictions.

Weighted Outage Predictions

                                                                                        balances the contributions of Low, Medium, and High severity

branches based on their frequency, ensuring fair representation of each severity level’s performance.



Benchmarking Our Model

Model                     Task                               Metric                          Value

Our                       Storm Presence Classification      F1-score                        0.9308

Our                       Storm Severity Classification      F1-score                        0.9329

Our                       Combined Forecasting Metric        F1{storm} × F1{severity}        0.8683

RAIN-F+ (2024)            Precipitation Classification       F1-score                        ~0.70

                          (>0.1 mm/h)                                                       

Saito et al. (2018)       Tropical Cyclone Detection         POD (Probability of Detection)  0.912

Yang et al. (2020)        Storm Severity Classification      Accuracy                        0.76

Lagerquist et al. (2020)  Convective Storm Classification    Not specified                   -

Forecasting Benchmark

Predicting Benchmark
Model                    Task                                     Metric               Value

Our                      Power Outage Prediction                  Weighted F1-score    0.98

                         (weighted across severity)                                  

Ertekin et al. (2024)    Power Outage Duration Prediction         Accuracy             0.98433

Ertekin et al. (2024)    Power Outage Duration Prediction         F1-score             0.98449

Khodaei (2016)           Component Outage Prediction              F1-score             0.9027

Wang et al. (2024)       Outage Probability Prediction            MAE                  0.01346–0.03547

Mohammadi et al. (2020)  Power Line Outage Identification         Not specified        -

Sequential Forecasting and Prediction Models Comparison
Model                    Tasks                                             Metrics                         Values

Our                      Storm Forecasting + Severity Classification +     Combined Forecasting Metric     0.8503

                         Outage Prediction                                                              

Yang et al. (2020)       Severity Classification + Outage Prediction       Severity Classification         0.76

                                                                           Accuracy                                 

Cerrai et al. (2019)     Weather Forecasting + Outage Prediction           Not specified                   -



National Weather

Service (NWS) API

OpenWeatherMap

API

Cloud Hosting

(AWS/Azure)
Prediction API

GIS

Integration

Alert

Systems

Deployability of Our Model in Future

Data Integration &

Real Time Feeds

Feature

Extraction &

Preprocessing

Serialized

(Saved) Model

Pipeline
Dashboard



Challenges Deployability Can Face

Data Latency and Availability

Delays or missing real-time weather data during storms can lead to late predictions, reducing response

time for utilities.

Model Drift and Generalization

Shifting weather patterns or regional differences can degrade model accuracy, requiring frequent

retraining.

Handling Noisy or Incomplete Data

Noisy (e.g., erroneous wind speed) or incomplete (e.g., missing storm path) data can cause incorrect

classifications, cascading errors through the pipeline.

Regulatory and Ethical Concerns

Errors in predictions may lead to legal or ethical issues, such as neglecting regions due to false negatives,

requiring compliance and fairness checks.
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